EconPapers    
Economics at your fingertips  
 

Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection

Mayowa M. Ojo, Temitope O. Benson, Olumuyiwa James Peter and Emile Franc Doungmo Goufo

Physica A: Statistical Mechanics and its Applications, 2022, vol. 607, issue C

Abstract: Infectious diseases have remained one of humanity’s biggest problems for decades. Multiple disease infections, in particular, have been shown to increase the difficulty of diagnosing and treating infected people, resulting in worsening human health. For example, the presence of influenza in the population is exacerbating the ongoing COVID-19 pandemic. We formulate and analyze a deterministic mathematical model that incorporates the biological dynamics of COVID-19 and influenza to effectively investigate the co-dynamics of the two diseases in the public. The existence and stability of the disease-free equilibrium of COVID-19-only and influenza-only sub-models are established by using their respective threshold quantities. The result shows that the COVID-19 free equilibrium is locally asymptotically stable when RC<1, whereas the influenza-only model, is locally asymptotically stable when RF<1. Furthermore, the existence of the endemic equilibria of the sub-models is examined while the conditions for the phenomenon of backward bifurcation are presented. A generalized analytical result of the COVID-19-influenza co-infection model is presented. We run a numerical simulation on the model without optimal control to see how competitive outcomes between-hosts and within-hosts affect disease co-dynamics. The findings established that disease competitive dynamics in the population are determined by transmission probabilities and threshold quantities. To obtain the optimal control problem, we extend the formulated model by including three time-dependent control functions. The maximum principle of Pontryagin was used to prove the existence of the optimal control problem and to derive the necessary conditions for optimum disease control. A numerical simulation was performed to demonstrate the impact of different combinations of control strategies on the infected population. The findings show that, while single and twofold control interventions can be used to reduce disease, the threefold control intervention, which incorporates all three controls, will be the most effective in reducing COVID-19 and influenza in the population.

Keywords: COVID-19; Influenza; Co-infection; Optimal control; Reproduction number (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122007312
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007312

DOI: 10.1016/j.physa.2022.128173

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007312