EconPapers    
Economics at your fingertips  
 

Influence maximization in social networks with privacy protection

Xian-Jie Zhang, Jing Wang, Xiao-Jing Ma, Chuang Ma, Jia-Qian Kan and Hai-Feng Zhang

Physica A: Statistical Mechanics and its Applications, 2022, vol. 607, issue C

Abstract: With the explosive development of online social network platforms, how to find a small subset of users (seed nodes) across multiple social networks to maximize the spread of information is of great significance. In reality, different platforms need to consider not only the commercial value of data, but also the protection of data privacy. In this situation, these multiple social platforms can be treated as a system of “multiple private social networks”, which naturally arises a new problem: how to maximize the spread of information in multiple private social networks without breaking the protocol of privacy protection. In view of this, we propose an HE-IM algorithm to solve the problem from the perspective of cryptography. Specifically, we use the homomorphic encryption security protocol and the third-party servers to encrypt and decrypt the influence of nodes in each private network and update the set of seed nodes. The experimental results demonstrate that, by cooperatively fusing information from different private networks in a secret manner, our method can effectively find influential seed nodes to maximize influence in multiple private social networks. The performance of our method in maximizing influence range is much better than that of the baseline methods only considering the structure of single private network. Therefore, the method provides a new way for collaborative search of influential seed nodes in multiple private social networks.

Keywords: Influence maximization problem; Multiple private social networks; Homomorphic encryption; Privacy protection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122007373
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007373

DOI: 10.1016/j.physa.2022.128179

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007373