Quantum mean centering for block-encoding-based quantum algorithm
Hai-Ling Liu,
Chao-Hua Yu,
Lin-Chun Wan,
Su-Juan Qin,
Fei Gao and
Qiaoyan Wen
Physica A: Statistical Mechanics and its Applications, 2022, vol. 607, issue C
Abstract:
Mean Centering (MC) is an important data preprocessing technique, which has a wide range of applications in data mining, machine learning, and multivariate statistical analysis. When the data set is large, this process will be time-consuming. In this paper, we propose an efficient quantum MC algorithm based on the block-encoding technique, which enables the existing quantum algorithms can get rid of the assumption that the original data set has been classically mean-centered. Specifically, we first adopt the strategy that MC can be achieved by multiplying by the centering matrix C, i.e., removing the row means, column means and row-column means of the original data matrix X can be expressed as XC, CX and CXC, respectively. This allows many classical problems involving MC, such as Principal Component Analysis (PCA), to directly solve the matrix algebra problems related to XC, CX or CXC. Next, we can employ the block-encoding technique to realize MC. To achieve it, we first show how to construct the block-encoding of the centering matrix C, and then further obtain the block-encodings of XC, CX and CXC. Finally, we describe one by one how to apply our MC algorithm to PCA and other algorithms.
Keywords: Mean centering; Quantum algorithm; Block-encoding; Matrix algebra problems; The centering matrix (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122007853
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007853
DOI: 10.1016/j.physa.2022.128227
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().