EconPapers    
Economics at your fingertips  
 

Generating highly entangled states via discrete-time quantum walks with Parrondo sequences

Dinesh Kumar Panda, B. Varun Govind and Colin Benjamin

Physica A: Statistical Mechanics and its Applications, 2022, vol. 608, issue P1

Abstract: Quantum entanglement has multiple applications in quantum information processing. Developing methods to generate highly entangled states independent of initial conditions is an essential task. Herein we aim to generate highly entangled states via discrete-time quantum walks. We propose deterministic Parrondo sequences that generate states that are generally much more entangled than states produced by sequences using only one of the two coins. We show that some Parrondo sequences generate highly entangled states, which are independent of the phase of the initial state used and further lead to maximally entangled states in some cases. We study Parrondo sequences for a small number of time steps and the asymptotic limit of a large number of time steps.

Keywords: Quantum Walks; Entanglement; Single-particle; Parrondo; Schmidt norm; Optimal (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122008147
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008147

DOI: 10.1016/j.physa.2022.128256

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008147