EconPapers    
Economics at your fingertips  
 

Probabilistic models with nonlocal correlations: Numerical evidence of q-Large Deviation Theory

Dario Javier Zamora and Constantino Tsallis

Physica A: Statistical Mechanics and its Applications, 2022, vol. 608, issue P1

Abstract: The correlated probabilistic model introduced and analytically discussed in Hanel et al. (2009) is based on a self-dual transformation of the index q which characterizes a current generalization of Boltzmann–Gibbs statistical mechanics, namely nonextensive statistical mechanics, and yields, in the N→∞ limit, a Q-Gaussian distribution for any chosen value of Q∈[1,3). We show here that, by properly generalizing that self-dual transformation, it is possible to obtain an entire family of such probabilistic models, all of them yielding Qc-Gaussians (Qc≥1) in the N→∞ limit. This family turns out to be isomorphic to the Hanel et al model through a specific monotonic transformation Qc(Q). Then, by following along the lines of Tirnakli et al (2022), we numerically show that this family of correlated probabilistic models provides further evidence towards a q-generalized Large Deviation Theory (LDT), consistently with the Legendre structure of thermodynamics. The present analysis deepens our understanding of complex systems (with global correlations among their elements), supporting the conjecture that generic models whose attractors under summation of N strongly-correlated random variables are Q-Gaussians, might always be concomitantly associated with q-exponentials in the LDT sense.

Keywords: Probabilistic models; Nonadditive entropic functionals; Entropic extensivity; Nonextensive statistical mechanics; Large Deviation Theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122008330
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008330

DOI: 10.1016/j.physa.2022.128275

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008330