Is there a one-to-one correspondence between interparticle interactions and physical properties of liquid?
Anatolii V. Mokshin and
Roman A. Khabibullin
Physica A: Statistical Mechanics and its Applications, 2022, vol. 608, issue P1
Abstract:
In this study, we present the original method for reconstructing the potential of interparticle interaction from statistically averaged structural data, namely, the radial distribution function of particles in many-particle system. This method belongs to a family of machine learning methods and is implemented through the differential evolution algorithm. As demonstrated for the case of the Lennard-Jones liquid taken as an example, there is no one-to-one correspondence between structure and potential of interparticle interaction of a many-particle disordered system at a certain thermodynamic state. Namely, a whole family of the Mie potentials determined by two parameters p1 and p2 related to each other according to a certain rule can reproduce properly a unique structure of the Lennard-Jones liquid at a given thermodynamic state. It is noteworthy that this family of the potentials quite correctly reproduces for the Lennard-Jones liquid the transport properties (in particular, the self-diffusion coefficient) over a temperature range as well as the dynamic structure factor, which is one of the key characteristics of the collective dynamics of particles.
Keywords: Interaction potentials; Machine learning; Genetic algorithms; Liquids; Soft systems; Structure (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712200855X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:608:y:2022:i:p1:s037843712200855x
DOI: 10.1016/j.physa.2022.128297
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().