Frame invariant neural network closures for Kraichnan turbulence
Suraj Pawar,
Omer San,
Adil Rasheed and
Prakash Vedula
Physica A: Statistical Mechanics and its Applications, 2023, vol. 609, issue C
Abstract:
Numerical simulations of geophysical and atmospheric flows have to rely on parameterizations of subgrid scale processes due to their limited spatial resolution. Despite substantial progress in developing parameterization (or closure) models for subgrid scale (SGS) processes using physical insights and mathematical approximations, they remain imperfect and can lead to inaccurate predictions. In recent years, machine learning has been successful in extracting complex patterns from high-resolution spatio-temporal data, leading to improved parameterization models, and ultimately better coarse grid prediction. However, the inability to satisfy known physics and poor generalization hinders the application of these models for real-world problems. In this work, we put forth a frame invariant closure approach to improve the accuracy and generalizability of deep learning-based subgrid scale closure models by embedding physical symmetries directly into the structure of the neural network. Specifically, we utilized specialized layers within the convolutional neural network in such a way that desired constraints are theoretically guaranteed without the need for any regularization terms. We demonstrate our framework for a two-dimensional decaying turbulence test case mostly characterized by the forward enstrophy cascade. We show that our frame invariant SGS model (i) accurately predicts the subgrid scale source term, (ii) respects the physical symmetries such as translation, Galilean, and rotation invariance, and (iii) is numerically stable when implemented in coarse-grid simulation with generalization to different initial conditions and Reynolds number. This work opens up a possibility of connecting physics-based theories and data-driven modeling paradigms, and thus represents a promising step towards the development of physically consistent data-driven turbulence closure models.
Keywords: Equivariant neural networks; Subgrid scale closure modeling; Frame invariances; Geophysical flows (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122008858
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008858
DOI: 10.1016/j.physa.2022.128327
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().