EconPapers    
Economics at your fingertips  
 

Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission

Sadia Arshad, Imran Siddique, Fariha Nawaz, Aqila Shaheen and Hina Khurshid

Physica A: Statistical Mechanics and its Applications, 2023, vol. 609, issue C

Abstract: To achieve the aim of immediately halting spread of COVID-19 it is essential to know the dynamic behavior of the virus of intensive level of replication. Simply analyzing experimental data to learn about this disease consumes a lot of effort and cost. Mathematical models may be able to assist in this regard. Through integrating the mathematical frameworks with the accessible disease data it will be useful and outlay to comprehend the primary components involved in the spreading of COVID-19. There are so many techniques to formulate the impact of disease on the population mathematically, including deterministic modeling, stochastic modeling or fractional order modeling etc. Fractional derivative modeling is one of the essential techniques for analyzing real-world issues and making accurate assessments of situations. In this paper, a fractional order epidemic model that represents the transmission of COVID-19 using seven compartments of population susceptible, exposed, infective, recovered, the quarantine population, recovered–exposed, and dead population is provided. The fractional order derivative is considered in the Caputo sense. In order to determine the epidemic forecast and persistence, we calculate the reproduction number R0. Applying fixed point theory, the existence and uniqueness of the solutions of fractional order derivative have been studied . Moreover, we implement the generalized Adams–Bashforth–Moulton method to get an approximate solution of the fractional-order COVID-19 model. Finally, numerical result and an outstanding graphic simulation are presented.

Keywords: Fractional calculus; COVID-19 model; Stability analysis; Existence and uniqueness; Adams–Bashforth Moulton method (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122009414
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009414

DOI: 10.1016/j.physa.2022.128383

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009414