Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles
Jiangjiang Cheng,
Wenjun Mei,
Wei Su and
Ge Chen
Physica A: Statistical Mechanics and its Applications, 2023, vol. 611, issue C
Abstract:
The stable cooperation ratio of spatial evolutionary games has been widely studied using simulations or approximate analysis methods. However, sometimes such “stable” cooperation ratios obtained via approximate methods might not be actually stable, but correspond to quasi-equilibriums instead. We find that various classic game models, like the evolutionary snowdrift game, evolutionary prisoner’s dilemma, and spatial public goods game on square lattices and scale-free networks, exhibit the phase transition in convergence time to the equilibrium state. Moreover, mathematical principles are provided to explain the phase transition of convergence time and quasi-equilibrium of cooperation ratio. The findings explain why and when cooperation and defection have a long-term coexistence.
Keywords: Networked evolutionary game; Phase transition; Quasi-equilibrium; Markov process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712300002X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:611:y:2023:i:c:s037843712300002x
DOI: 10.1016/j.physa.2023.128447
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().