EconPapers    
Economics at your fingertips  
 

Investigating preferential acquisition and attachment in early word learning through cognitive, visual and latent multiplex lexical networks

Floriana Ciaglia, Massimo Stella and Casey Kennington

Physica A: Statistical Mechanics and its Applications, 2023, vol. 612, issue C

Abstract: Children learn their first language in a highly multimodal environment. This paper outlines a quantitative framework capturing children’s typical language acquisition through multimodal conceptual features. Building on prior research from cognitive network science and distributional semantic theories from natural language processing, this work models toddlers’ learning environment, between months 18 and 30, as either a multiplex lexical network capturing phonological/semantic/visual/sensorimotor and latent conceptual similarities, or as a collection of vectorial latent/sensorimotor/visual word embeddings. Each layer represents a set of information that toddlers might use to learn words over time. By comparing both attachment and acquisition, we reproduce past results about preferential acquisition capturing correlations with normative learning when using a semantic/phonological multiplex network. We extend this approach to show that: (i) preferential attachment can capture strong signals of normative word acquisition but only when visual and latent aspects of words are merged in a multiplex network with semantic/syntactic/phonological layers; (ii) preferential acquisition produces overall stronger signals in all other instances (in agreement with approaches); (iii) evidence for anti-correlations show the prevalence of word distinctiveness across early word learning strategies, as also identified in past approaches. We also explore cosine distance as a new attachment method for layers that are derived from embeddings and, as has been shown in prior work with multiplex networks, only when all layers are used do patterns emerge that correlate with normative word learning. Word embeddings and network structures provide analogous results, indicating how the combination of these structures for modeling strategies in word learning represents a viable and promising direction for future research.

Keywords: Complex networks; Embeddings; Cognitive modeling; Early word acquisition; Preferential attachment; Multiplex networks; Cognitive network science (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123000237
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:612:y:2023:i:c:s0378437123000237

DOI: 10.1016/j.physa.2023.128468

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:612:y:2023:i:c:s0378437123000237