EconPapers    
Economics at your fingertips  
 

Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms

Basma Khelfa, Ibrahima Ba and Antoine Tordeux

Physica A: Statistical Mechanics and its Applications, 2023, vol. 612, issue C

Abstract: Understanding and predicting highway lane-change maneuvers is essential for driving modeling and its automation. The development of data-based lane-changing decision-making algorithms is nowadays in full expansion. We compare empirically in this article different machine and ensemble learning classification techniques to the MOBIL rule-based model using trajectory data of European two-lane highways. The analysis relies on instantaneous measurements of up to twenty-four spatial–temporal variables with the four neighboring vehicles on current and adjacent lanes. Preliminary descriptive investigations by principal component and logistic analyses allow identifying main variables intending a driver to change lanes. We predict two types of discretionary lane-change maneuvers: overtaking (from the slow to the fast lane) and fold-down (from the fast to the slow lane). The prediction accuracy is quantified using total, lane-changing and lane-keeping errors and associated receiver operating characteristic curves. The benchmark analysis includes logistic model, linear discriminant, decision tree, naïve Bayes classifier, support vector machine, neural network machine learning algorithms, and up to ten bagging and stacking ensemble learning meta-heuristics. If the rule-based model provides limited predicting accuracy, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements. Cross validations show that selected neural networks and stacking algorithms allow predicting from a single observation both fold-down and overtaking maneuvers up to four seconds in advance with high accuracy.

Keywords: Highway traffic; Lane change prediction; Benchmark analysis; Rule-based model; Data-based algorithm; Ensemble learning techniques (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123000262
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:612:y:2023:i:c:s0378437123000262

DOI: 10.1016/j.physa.2023.128471

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:612:y:2023:i:c:s0378437123000262