EconPapers    
Economics at your fingertips  
 

p-adic statistical field theory and deep belief networks

W.A. Zúñiga-Galindo

Physica A: Statistical Mechanics and its Applications, 2023, vol. 612, issue C

Abstract: In this work we initiate the study of the correspondence between p-adic statistical field theories (SFTs) and neural networks (NNs). In general quantum field theories over a p-adic spacetime can be formulated in a rigorous way. Nowadays these theories are considered just mathematical toy models for understanding the problems of the true theories. In this work we show these theories are deeply connected with the deep belief networks (DBNs). Hinton et al. constructed DBNs by stacking several restricted Boltzmann machines (RBMs). The purpose of this construction is to obtain a network with a hierarchical structure (a deep learning architecture). An RBM corresponds to a certain spin glass, we argue that a DBN should correspond to an ultrametric spin glass. A model of such a system can be easily constructed by using p-adic numbers. In our approach, a p-adic SFT corresponds to a p-adic continuous DBN, and a discretization of this theory corresponds to a p-adic discrete DBN. We show that these last machines are universal approximators. In the p-adic framework, the correspondence between SFTs and NNs is not fully developed. We point out several open problems.

Keywords: p-adic numbers; Statistical field theory; Deep belief networks; Universal approximators (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712300047X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:612:y:2023:i:c:s037843712300047x

DOI: 10.1016/j.physa.2023.128492

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:612:y:2023:i:c:s037843712300047x