A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method
Peng Li,
Weitiao Wu and
Xiangjing Pei
Physica A: Statistical Mechanics and its Applications, 2023, vol. 616, issue C
Abstract:
Accurate short-term passenger flow prediction plays an important role in transit planning and operation. Existing research is mostly based on a joint modelling approach in which transit demand is predicted in an aggregated manner taking the overall passenger flow as input. A critical problem for the joint modelling approach is that the complexity of passenger flow composition and the distinct behavioural response to influential factors are missing out. To address this challenge, this paper proposes a separate modelling approach for passenger flow prediction based on behavioural patterns. To this end, we develop a novel hybrid decision tree (HDT) model coupled with a decision tree model and time series model. The upper layer is a decision tree model, in which the dataset is divided according to passenger types and influential factors, while the lower layer is the time series model achieved by the recurrent neural network. Particularly, this research first undertakes passenger classification using smartcard data through cluster analysis, from which the correlation between the classified passenger flow and influential factors is obtained. The proposed method is tested in a real-life bus route in Guangzhou, China. We also investigate the impact of passenger classification schemes and the minimum amount of data contained by leaf nodes on the performance of the HDT model. Based on this, we recommend the best classification scheme and the optimal value of the minimum amount of data contained by leaf nodes. Comparisons show that our method outperforms other traditional methods in terms of both prediction accuracy and stability. In addition, our method could also provide the prediction of passenger flow composition, which provides more references for customized bus service design.
Keywords: Passenger flow prediction; Separate modelling approach; Passenger classification; Multi-source information; Hybrid decision tree (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712300122X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:616:y:2023:i:c:s037843712300122x
DOI: 10.1016/j.physa.2023.128567
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().