Estimating pandemic effects in urban mass transportation systems: An approach based on visibility graphs and network similarity
Yuri Perez and
Fabio Henrique Pereira
Physica A: Statistical Mechanics and its Applications, 2023, vol. 620, issue C
Abstract:
The COVID-19 pandemic has caused unprecedented disruptions to urban systems worldwide, but the extent and nature of these disruptions are not yet fully understood when it comes to transportation. In this work, we aim to explore how social distancing policies have affected passenger demand in urban mass transportation systems with the goal of supporting informed decisions in policy planning. We propose an approach based on complex networks and clustering time series with similar behavior, investigating possible changes in similarity patterns during pandemics and how they reflect into a regional scale. The methods shown here proved useful in detecting that lines in central or peripheral regions present different dynamics, that bus lines have changed their behavior during pandemic so that similarity relations have changed significantly, and that when social distancing started, there was an abrupt shock in the properties of daily passenger time series, and the system did not return to its original behavior until the end of the evaluated period. The approach allows to track evolution of the community structure in different scenarios providing managers with tools to reinforce or destabilize similarities if needed.
Keywords: Complex systems; Urban transportation; Visibility graph; Pandemics; Time series; Complex networks (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123003278
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:620:y:2023:i:c:s0378437123003278
DOI: 10.1016/j.physa.2023.128772
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().