EconPapers    
Economics at your fingertips  
 

Multi-step forecasting of short-term traffic flow based on Intrinsic Pattern Transform

Hai-chao Huang, Jing-ya Chen, Bao-cun Shi and Hong-di He

Physica A: Statistical Mechanics and its Applications, 2023, vol. 621, issue C

Abstract: Multi-step forecasting is an essential but tricky aspect of Intelligent Transportation Systems (ITS). Existing models generally yield unreliable results as the forecasting horizon increases due to the decay of temporal dependence. This paper presents a novel module named Intrinsic Pattern Transform (IPT) to uncover the intrinsic traffic pattern and captures long-term temporal dependence. Specifically, Empirical Mode Decomposition (EMD) is adopted to separate the traffic flow into multiple Intrinsic Mode Functions (IMFs). The mean instantaneous frequencies extracted from each IMFs via Hilbert transform indicate practical implications of traffic flow composition. We replace priori-based frequency with mean instantaneous frequencies to reconstruct long-term trends using Fourier Transform. Applying IPT to raw traffic flows successfully extracts traffic patterns, such as daily and rush hour patterns, which provides a novel perspective to understand the traffic evolution trend better. We validate IPT and IPT-based models by conducting experiments on two real-world datasets. It is experimentally demonstrated that introducing IPT for the stand-alone model does not impair single-step prediction performance, and error of multi-step prediction reduce by 0.44–5.38 MAE/step. An in-depth analysis of the robust and residual distribution demonstrates that the IPT exhibits high tolerance to noise while suppressing the generation of outliers. Comparison experiments with other baseline models demonstrate that our approach has better performance and three times lower time complexity for multi-step prediction.

Keywords: Short-term traffic flow forecasting; Intrinsic pattern transform (IPT); Traffic pattern exploration; Multi-step forecasting; Residual analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123003539
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123003539

DOI: 10.1016/j.physa.2023.128798

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123003539