EconPapers    
Economics at your fingertips  
 

A novel numerical scheme for fractional differential equations using extreme learning machine

Sivalingam S M, Pushpendra Kumar and V. Govindaraj

Physica A: Statistical Mechanics and its Applications, 2023, vol. 622, issue C

Abstract: In this paper, we propose a neural network-based approach with an Extreme Learning Machine (ELM) for solving fractional differential equations. The solution procedure for the linear and nonlinear fractional differential equations has been derived. Also the convergence and stability of the proposed method is provided. Then we examine the numerical solution of several fractional-order ordinary and partial differential equations. As a last example the Burgers equation without an explicit exact solution. The effect of changing the number of neurons on the accuracy of the solution is obtained graphically.

Keywords: Extreme learning machine; Neural networks; Legendre polynomials; Operational matrix (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123004429
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004429

DOI: 10.1016/j.physa.2023.128887

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004429