Response to multiplicative noise: The cross-spectrum of membrane voltage fluctuation and voltage-independent conductance noise
Jia-Zeng Wang,
Shu Ma,
Yu Ji and
Qi Sun
Physica A: Statistical Mechanics and its Applications, 2023, vol. 622, issue C
Abstract:
We reveal that the correlation of voltage fluctuation and voltage-independent conductance noise, rather than the magnitude of the latter, explains most of the former. Being the response function in the spectral domain, the cross-spectrum has an order-three scaling law originating in the imaginary part, and it can be divided into three phases: left the real part dominant phase; right the imaginary part dominant phase; and center the transition phase. Since the coherence in the left phase has a greater decay rate than that in the right phase, an additional peak appears in the transition phase. All of these results imply that the effects of conductance noise, being multiplicative, cannot be characterized by the concept of impedance—which is adopted from the field of equilibrium thermodynamics.
Keywords: Conductance noise; Cross spectrum; Coherence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123004430
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123004430
DOI: 10.1016/j.physa.2023.128888
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().