Modelling and simulating the leader–follower behaviour of pedestrians in unidirectional flow
Karthika P. Sobhana,
Nipun Choubey and
Ashish Verma
Physica A: Statistical Mechanics and its Applications, 2023, vol. 623, issue C
Abstract:
The following (or) queuing behaviour of pedestrians, wherein people walk one after the other in a line is a common occurrence in pedestrian facilities or crowd gatherings. Though many studies have explored this behaviour, especially using single-file experiments, this behaviour cannot be treated in isolation from other walking behaviours like overtaking or lane-changing. Also, the contemporary models assume that the person ahead is the leader by all the pedestrians. In the real-world, however, the follower may not consider their predecessor as a leader and modulate their movements according to the leader dynamics. Yet, most pedestrian models are deterministic and do not incorporate uncertainty and fluctuations of perception and behaviour. The proposed following model is nondeterministic and data-driven We propose a methodology to model the pedestrian walking dynamics in a unidirectional single channel flow by jointly modelling the aspect of probabilistic consideration of leader, lane changing, and following behaviour. The proposed behavioural model is calibrated using field data of pilgrim’s movement in a narrow corridor in Kumbh Mela, a mass religious gathering in India. It is noted that the probability of lane change is directly proportional to the adjacent lane spacing and inversely proportional to the current lane spacing. The threshold spacing, within which the chances of the following pedestrian to consider the pedestrian ahead as a leader is obtained to be 1.2 m for the final model. An agent-based model is developed based on the calibrated behavioural model and several scenarios such as speed variations, gender influences, and flow variations are tested. It was observed that when few pedestrians stop in between for a while, the average speeds reduced from 1 m/s to 0.57 m/s and the probability of following pedestrians doing lane change increased. Also, the variation in spacing is observed to have more spread when the agents move slowly. The proposed agent-based microsimulation model can be used by the event managers by allowing them to test various possible scenarios during the event-preparation phase of crowd management.
Keywords: Leader consideration; Pedestrian behaviour; Agent-based model; Mass gatherings (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123003795
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123003795
DOI: 10.1016/j.physa.2023.128824
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().