Dense Hebbian neural networks: A replica symmetric picture of unsupervised learning
Elena Agliari,
Linda Albanese,
Francesco Alemanno,
Andrea Alessandrelli,
Adriano Barra,
Fosca Giannotti,
Daniele Lotito and
Dino Pedreschi
Physica A: Statistical Mechanics and its Applications, 2023, vol. 627, issue C
Abstract:
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via statistical-mechanics tools, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters (e.g. quality and quantity of the training dataset, network storage, noise) that is valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning.
Keywords: Spin glasses; Cost and loss functions; Hebbian learning (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123006982
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:627:y:2023:i:c:s0378437123006982
DOI: 10.1016/j.physa.2023.129143
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().