EconPapers    
Economics at your fingertips  
 

Graph embedding based on motif-aware feature propagation for community detection

Xunlian Wu, Han Zhang, Yining Quan, Qiguang Miao and Peng Gang Sun

Physica A: Statistical Mechanics and its Applications, 2023, vol. 630, issue C

Abstract: Identifying communities plays an essential role in disclosing modular structures with specific functions or properties in different kinds of complex networks. However, the low accuracy can be attributed to the fact that traditional algorithms always pay more attention on networks’ structural information of lower-order, i.e. neglect that of higher-order. In this paper, we propose a novel algorithm, Graph Embedding based on Motif-aware Feature Propagation (GEMFP) for community detection. In graph embedding, the vector representation of each node in a graph is firstly initialized at random. Then, we reconstruct a weighted graph instead of the original one by considering the information of lower-order (adjacency interactions) as well as higher-order (motifs), which is further used to define the influence acceptance between nodes, and the representation of a node is determined by aggregating the information of its neighbors’ influence iteratively until the convergence of this process is reached. Finally, K-means algorithm is adopted to extract communities by using the above embedding information. We conduct extensive experiments on 14 real-world datasets, and the results show that our algorithm tends to be more effective for community detection compared with several traditional, and graph embedding algorithms. The code for GEMFP is accessible on GitHub at https://github.com/zhanghan1020/GEMFP.

Keywords: Community detection; Graph embedding; Motif; Influence acceptance; K-means algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123007604
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123007604

DOI: 10.1016/j.physa.2023.129205

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123007604