Local assortativity in weighted and directed complex networks
M. Sabek and
U. Pigorsch
Physica A: Statistical Mechanics and its Applications, 2023, vol. 630, issue C
Abstract:
Assortativity, i.e. the tendency of a vertex to bond with another based on their similarity, such as degree, is an important network characteristic that is well-known to be relevant for the network’s robustness against attacks. Commonly it is analyzed on the global level, i.e. for the whole network. However, the local structure of assortativity is also of interest as it allows to assess which of the network’s vertices and edges are the most endangering or the most protective ones. Hence, it is quite important to analyze the contribution of individual vertices and edges to the network’s global assortativity. For unweighted networks Piraveenan et al. (2008; 2010) and Zhang et al. (2012) suggest two allegedly different approaches to measure local assortativity. In this paper we show their equivalence and propose generalized local assortativity measures that are also applicable to weighted (un)directed networks. They allow to analyze the assortative behavior of edges and vertices as well as of entire network components. We illustrate the usefulness of our measures based on theoretical and real-world weighted networks and propose new local assortativity profiles, which provide, inter alia, information about the pattern of local assortativity with respect to edge weight.
Keywords: Network; Local assortativity; Third order graph metric; Network robustness; Assortativity profile (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123007860
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123007860
DOI: 10.1016/j.physa.2023.129231
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().