Fragmentation from group interactions: A higher-order adaptive voter model
Nikos Papanikolaou,
Renaud Lambiotte and
Giacomo Vaccario
Physica A: Statistical Mechanics and its Applications, 2023, vol. 630, issue C
Abstract:
The adaptive voter model allows for studying the interplay between homophily, the tendency of like-minded individuals to attract each other, and social influence, the tendency for connected individuals to influence each other. However, it relies on graphs, and thus, it only considers pairwise interactions. We develop a minimal extension of the adaptive voter model to hypergraphs to study the interactions of groups of arbitrary sizes using a threshold parameter. We study S-uniform hypergraphs as initial configurations. With numerical simulations, we find new phenomena not found in the counterpart pairwise models, such as the formation of bands in the magnetization and the lack of an equilibrium state. Finally, we develop an analytical model using a sparse hypergraph approximation that accurately predicts the bands’ boundaries and height.
Keywords: Opinion dynamics; Network science; Group interactions; Co-evolution model; Hypergraphs (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008129
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008129
DOI: 10.1016/j.physa.2023.129257
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().