EconPapers    
Economics at your fingertips  
 

Interval prediction of vessel trajectory based on lower and upper bound estimation and attention-modified LSTM with bayesian optimization

Yukuan Wang, Jingxian Liu, Ryan Wen Liu, Weihuang Wu and Yang Liu

Physica A: Statistical Mechanics and its Applications, 2023, vol. 630, issue C

Abstract: Uncertainty prediction of vessel trajectory is essential to enhance maritime situational awareness and traffic safety. Traditional approaches for trajectory prediction face challenges in accurately quantifying uncertainties, thereby limiting effectiveness in decision-making. To address this challenge, we propose a hybrid interval prediction frame of vessel trajectory using the lower and upper bound estimation (LUBE) and attention-modified long short-term memory (LSTM) network with bayesian optimization (BO). Firstly, trajectory data is preprocessed to solve the scale irregularity. Then, a novel trajectory interval prediction model for perceiving the prediction uncertainties is designed based on an advanced attention-modified LSTM with interval prediction capability. Meanwhile, a supervised training strategy with differentiating the interval widths of latitude and longitude is put forward to devise sample labels for training the model. Additionally, a new prediction interval-based objective function is proposed considering the target of maximizing coverage and minimizing width of trajectory interval. The BO algorithm optimizes the weighted parameters in the LSTM network by minimizing the objective function value. Finally, cases from two water areas are implemented to test and verify the proposed method. The results illustrate the superiority of the proposed approach in (1) outperforming other methods used for comparison in both coverage probability and width criteria of prediction interval. (2) quantifying the prediction uncertainty and improving the reliability of trajectory predictor. (3) performing anomaly detection tasks using visualized trajectory prediction intervals. The research can help maritime traffic participants obtain more reliable trajectory data, which supports making more reasonable traffic supervision decisions.

Keywords: Vessel trajectory; Interval prediction; Long short-term memory; Lower and upper bound estimation (LUBE); Attention mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008300
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008300

DOI: 10.1016/j.physa.2023.129275

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008300