A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway
Yangsheng Jiang,
Hongwei Cong,
Yi Wang,
Yunxia Wu,
Hongwu Li and
Zhihong Yao
Physica A: Statistical Mechanics and its Applications, 2023, vol. 630, issue C
Abstract:
With the development of autonomous driving technology, designing connected automated vehicles (CAVs) control strategies to mitigate traffic oscillations has become a hot topic. Most current control strategies are mainly oriented to single-lane highway scenarios and do not consider vehicles' lane-changing behaviors. To address the gap, this paper proposes the Follower-Stopper-Platoon (FSP) strategy, which attempts to mitigate traffic oscillation by controlling a platoon of CAVs in a two-lane scenario. Firstly, based on the Follower-Stopper (FS) control and considering CAVs' platoon behaviors, this paper proposes the FSP strategy and compares it with two comparative strategies, the Baseline and FS strategies. Then, a two-lane mixed traffic flow cellular automata model is developed and used to verify the effectiveness of the FSP strategy. Finally, this study demonstrates the efficacy of the FSP strategy by designing simulation experiments and analyzes the effect of CAVs' platoon size on the control effect. The result shows that (1) the FSP strategy can overcome the shortcomings of the FS control and will increase traffic flow speed while mitigating traffic oscillations. (2) In a two-lane scenario, as penetration rates of CAVs and traffic densities increase, the FSP strategy's advantages in mitigating traffic oscillations, reducing energy consumption and pollutant emissions, and improving speed and passenger comfort are gradually apparent. (3) Under the FSP strategy, the larger the maximum size of the CAVs platoon, the better the performance of the mixed traffic flow in terms of traffic efficiency, stability, fuel consumption, and pollutant emission.
Keywords: Mixed traffic flow; Two-lane scenario; Traffic oscillation mitigation; Cellular automata; Connected automated vehicles; Maximum platoon size (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008440
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008440
DOI: 10.1016/j.physa.2023.129289
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().