Testing lockdown measures in epidemic outbreaks through mean-field models considering the social structure
E.A. Rozan,
S. Bouzat and
M.N. Kuperman
Physica A: Statistical Mechanics and its Applications, 2023, vol. 632, issue P1
Abstract:
Lately, concepts such as lockdown, quarantine, and social distancing have become very relevant since they have been associated with essential measures in the prevention and mitigation of COVID-19. While some conclusions about the effectiveness of these measures could be drawn from field observations, many mathematical models aimed to provide some clues. However, the reliability of these models is questioned, especially if the social structure is not included in them. In this work, we propose a mesoscopic model that allows the evaluation of the effect of measures such as social distancing and lockdown when the social topology is taken into account. The model is able to predict successive waves of infections without the need to account for reinfections, and it can qualitatively reproduce the wave patterns observed across many countries during the COVID-19 pandemic. Subsequent waves can have a higher peak of infections if the restrictiveness of the lockdown is above a certain threshold. The model is flexible and can implement various social distancing strategies by adjusting the restrictiveness and the duration of lockdown measures or specifying whether they occur once or repeatedly. It also includes the option to consider essential workers that do not isolate during a lockdown.
Keywords: COVID-19; Mathematical epidemiology; Social network dynamics; Lockdown and social distancing modeling; Second wave (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008853
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008853
DOI: 10.1016/j.physa.2023.129330
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().