A unified modeling framework for lane change intention recognition and vehicle status prediction
Renteng Yuan,
Mohamed Abdel-Aty,
Xin Gu,
Ou Zheng and
Qiaojun Xiang
Physica A: Statistical Mechanics and its Applications, 2023, vol. 632, issue P1
Abstract:
Accurately detecting and predicting Lane Change (LC) processes of human-driven vehicles can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This paper focuses on LC processes, first developing a Temporal Convolutional Network (TCN) with an attention mechanism (ATM) model to recognize LC intention. Then, considering the intrinsic relationship among output variables, the Multi-Task Learning (MTL) framework is employed to simultaneously predict multiple LC vehicle status indicators. Furthermore, a unified modeling framework for LC intention recognition and driving status prediction (LC-IR-SP) is developed. The results indicate that the classification accuracy of LC intention was improved from 95.83% to 98.20% when incorporating the ATM into the TCN model. For LC vehicle status prediction issues, Pearson's correlation coefficient indicates that metrics extracted from LC processes show stronger correlation than those extracted from Lane-keeping processes. Consequently, three multi-tasking learning models are constructed based on the MTL framework. The results indicate that the MTL with Long Short-Term Memory (MTL-LSTM) model outperforms the MTL with TCN (MTL-TCN) and MTL with TCN-ATM (MTL-TCN-ATM) models. Compared to the corresponding single-task model, the MTL-LSTM model demonstrates an average decrease of 26.04% in MAE and 25.19% in RMSE. The LC-IR-SP model developed holds great potential in enhancing autonomous vehicles' perception and prediction capabilities, such as identifying LC behaviors, calculating real-time traffic conflict indices, and improving vehicle control strategies.
Keywords: Vehicle trajectory; Lane-change intention recognition; Driving status prediction; Multi-task TCN model; Attention Mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008877
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008877
DOI: 10.1016/j.physa.2023.129332
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().