EconPapers    
Economics at your fingertips  
 

TRELM-DROP: An impavement non-iterative algorithm for traffic flow forecast

Yuwei Yang, Zhuoxuan Li, Jun Chen, Zhiyuan Liu and Jinde Cao

Physica A: Statistical Mechanics and its Applications, 2024, vol. 633, issue C

Abstract: Accurate prediction of traffic flow is crucial to building a smart city. Given the nonlinearity of traffic flow, this paper proposes an extreme learning machine (ELM) algorithm based on residual correction and Tent chaos sequence combined with the DROP strategy. The algorithm is referred to as TRELM-DROP. The Tent chaos strategy and residual correction method reduce the impact of randomness in traffic flow. On this basis, the Tent and residual correction strategy avoids the weight optimization of the ELM algorithm using the iterative method. A DROP strategy is proposed in the proposed algorithm to improve its ability to predict traffic flow under varying conditions. A comprehensive comparison of 36 real-world datasets is presented in this paper, comparing TRELM-DROP with other benchmark models. The results show that the proposed algorithm can produce the best prediction performance regarding various prediction error metrics under various traffic conditions without iterative optimization.

Keywords: Traffic flow prediction; Extreme learning machine; Dropout; Tent chaos (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123008920
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123008920

DOI: 10.1016/j.physa.2023.129337

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123008920