EconPapers    
Economics at your fingertips  
 

A digital decision approach for indirect-reciprocity based cooperative lane-changing

Zhouzhou Yao, Xianyu Wu, Yang Yang and Ning Li

Physica A: Statistical Mechanics and its Applications, 2024, vol. 633, issue C

Abstract: Digital technology plays an important role in the construction of intelligent transportation systems. The digitization of travel and traffic information contributes to the efficiency, equality and safety of travel for urban residents. This paper developed a cooperative lane-changing decision system based on digital technology and indirect reciprocity. The connected vehicle in the vehicle networking environment refers to a vehicle equipped with advanced on-board sensors, control systems, actuators and other devices, which integrates modern communication and network technology to realize intelligent information exchange and sharing between vehicles, roads, people, and clouds. Therefore, connected vehicles can know each other's communication position, speed, and acceleration. Under this premise, this paper innovatively proposes a decision system that introduces image scoring to attempt to solve the problem of drivers having difficulty cooperating in lane-changing at intersection. The lagging vehicle can gain image scores by yielding to the lane-changing vehicle, thus gaining a greater chance of being yielded to in the future. This paper also extends the model to a repeated evolutionary game, proposing a Q-learning based reinforcement learning algorithm that enables drivers in the simulation to continuously evaluate gains and adjust their strategies. The conclusions are summarized as follows. For non-fully rational drivers, this lane-changing mechanism considering indirect reciprocity can indeed improve driver cooperation which is more than 50% under any connected vehicles penetration and traffic density, especially under medium and low traffic density and high penetration, the cooperation probability can reach 100%. Lane-changing time is also saved, which means that the application of digital technologies based on indirect reciprocity can achieve unity of efficiency and equality. Meantime, traffic efficiency and delays at intersection where connected and non-connected vehicles are mixed can be improved, especially at high connected vehicles penetration and medium to high traffic density. Therefore, this study reflects the sustainable improvement of urban transportation with digital decision systems and is beneficial for the future application of digital technology in urban intelligent transportation systems and automatic driving field.

Keywords: Connected vehicles; Decision system; Lane changing; Cooperation; Indirect reciprocity; Sustainable transportation; Q-learning; Agent-based model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123009202
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009202

DOI: 10.1016/j.physa.2023.129365

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009202