Modeling pedestrian single-file movement: Extending the interaction to the follower
Rudina Subaih and
Antoine Tordeux
Physica A: Statistical Mechanics and its Applications, 2024, vol. 633, issue C
Abstract:
This article proposes a new microscopic speed model for one-dimensional pedestrian movement. Most existing modeling approaches consider only the distance and relative speed between a pedestrian and the person in front resulting in totally asymmetric interaction models. However, the distance with the pedestrian behind may also influence the behavior of a pedestrian. Based on this assumption, we elaborate a new asymmetric microscopic model considering the relative distances with the nearest neighbors behind and ahead using a fine-tuning asymmetry parameter. We analyze the stability of the new model and calibrate the parameters using two different single-file movement datasets. The numerical simulation results show that the new model has fewer backward movements and pedestrian overlaps than the totally asymmetric model making the stop-and-go waves in crowded situations more realistic. Furthermore, the proposed fine-tuned model better describes the fundamental diagram and its scattering.
Keywords: Pedestrian dynamics; Single-file movement; Microscopic model; Least squares parameter estimate; Fundamental diagram; Stop-and-go waves (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123009494
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009494
DOI: 10.1016/j.physa.2023.129394
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().