EconPapers    
Economics at your fingertips  
 

MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction

Bharti Naheliya, Poonam Redhu and Kranti Kumar

Physica A: Statistical Mechanics and its Applications, 2024, vol. 634, issue C

Abstract: Within Intelligent Transportation Systems (ITSs), modeling of traffic flow assumes a pivotal role, as it is crucial for alleviating traffic congestion and reducing carbon emissions. Developing a reliable and sustainable model for predicting traffic flow is highly challenging due to the fluctuations and nonlinear characteristics of traffic flow. In addition to being a practical problem, accurately forecasting traffic flow provides substantial challenges to the researchers working in this area. The aim of this study is to develop a complex framework for forecasting short-term traffic flow with the purpose of improving prediction accuracy. In order to attain this goal, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with a Modified Firefly Optimization Algorithm (MFOA) known as MFOA-Bi-LSTM has been proposed. The MFOA optimization technique has been utilized to optimize the hyperparameters of the deep learning models. Moreover, the optimization of the Bi-LSTM network prediction model is achieved through the application of the MFOA technique, which is renowned for its ability to converge quickly, maintain robustness and perform extensive global searches. To better capture complex patterns in the input data and increase prediction accuracy, model’s architecture makes use of the bidirectional capabilities of Bi-LSTM layers. This combination of Bi-LSTM and FOA is proposed for optimizing complex sequence modeling tasks where selecting the right hyperparameters for the model is challenging and it allows for automated hyperparameter tuning and often leads to improved model performance. In terms of performance metrics including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Correlation Coefficient (r), the proposed model significantly outperforms the other selected models and study findings confirm its appropriateness for the predictive task.

Keywords: Intelligent transportation system; Traffic flow prediction; Fireflies optimization algorithm; Bidirectional long short term memory neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123010038
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010038

DOI: 10.1016/j.physa.2023.129448

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010038