EconPapers    
Economics at your fingertips  
 

Analysis of the macroscopic effect of a driver’s desired velocity on traffic flow characteristics

Bing-ling Cen, Yu Xue, Yu-xian Xia, Kun Zhang and Ji Zhou

Physica A: Statistical Mechanics and its Applications, 2024, vol. 637, issue C

Abstract: In Prigogine's traffic kinetic model, the expected velocity of each driver is assumed to be independent of time, and its relaxation term is ignored. In Paveri–Fontana’s model, the vehicle accelerates to the desired velocity by means of a relaxation term. Méndez’s model assumed that the desired velocity is proportional to the instantaneous velocity, reflecting that all drivers want to drive at a higher velocity, which is a characteristic of aggressive drivers. In order to restrain the character of drivers, considering the relationship between a driver’s desired velocity and the surrounding environment and local instantaneous velocity, a new relaxation process is adopted, which describes that the desired velocity is adaptively adjusted toward the local equilibrium velocity within the relaxation time. We use Chapman-Enskog method and Grad’s moments method to derive the Navier-Stokes traffic equation. The stability condition is obtained by the linear stability analysis. Compared with the steady situation of both Kerner–Konhäuser model and Helbing’s model, it is shown that the extended continuum model has the ability to simulate stop-and-go traffic under medium and high density. Numerical simulation results show that the extended continuum model has a better control effect of traffic congestion than the Paveri–Fontana equation. Finally, the rationality of the extended continuum model is verified by simulations of partially reduced lane traffic and high-density traffic flow.

Keywords: Desired velocity; Chapman–Enskog method; Grad’s moment method; Traffic continuum model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124000864
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000864

DOI: 10.1016/j.physa.2024.129578

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000864