A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods
Feng Shao,
Hu Shao,
Dongle Wang and
William H.K. Lam
Physica A: Statistical Mechanics and its Applications, 2024, vol. 638, issue C
Abstract:
Travel time reliability (TTR) serves as a crucial indicator for evaluating the efficiency and service quality of a road traffic network. This paper proposes a multi-task spatio-temporal generative adversarial network (MTST-GAN) model that simultaneously predicts the TTR in morning and evening peak hour periods. The model incorporates multi-graph convolutional networks to extract spatial correlations from travel time data, while long short-term memory neural networks are employed to consider temporal correlations. Additionally, self-attention mechanisms are applied to the proposed MTST-GAN model to further capture spatial and temporal features. A feature fusion bridge is constructed to integrate the spatial and temporal features learned by each task. Through a numerical experiment conducted on a road network in a Chinese city, our findings demonstrate that the proposed model outperforms several state-of-the-art approaches in terms of Jensen-Shannon divergence, mean, standard deviation, and buffer time indices. Finally, we provide conclusions and suggest areas for further research.
Keywords: Morning and evening peak hours; Travel time reliability; Multi-task learning; Generative adversarial network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124001407
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:638:y:2024:i:c:s0378437124001407
DOI: 10.1016/j.physa.2024.129632
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().