Modular nudging models: Formulation and identification from real-world traffic data sets
Jing Li,
Di Liu and
Simone Baldi
Physica A: Statistical Mechanics and its Applications, 2024, vol. 638, issue C
Abstract:
The vehicle nudging behaviour suggests that a vehicle in the traffic flow may induce a ‘pushing effect’ to its preceding vehicle. In other words, while the traditional vehicle-following behaviour results in look-ahead interaction, the nudging behaviour may result in look-behind interaction: the combination of the two effects would result in bidirectional inter-vehicle interactions. Unfortunately, all reported numerical examples and traffic simulators indicating that nudging may improve the traffic flow with artificially engineered nudging behaviour. It is still unclear if such behaviour really occurs and is crucial in our roads. To address this question, this work proposes “modular” nudging models, meaning that the model is able to describe both the look-ahead-only scenario (with only vehicle-following behaviour) and the look-ahead-and-behind scenario (with both vehicle-following and nudging behaviour). We apply this modular philosophy to traditional models (optimal velocity model, intelligent driver model) and to a physics-inspired neural network model. By using the NGSIM real-world traffic data sets, the models suggest that the nudging effect plays a smaller and smaller role as the model accuracy improves.
Keywords: Vehicle-following models; vehicle nudging; NGSIM; Connected vehicles (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712400150X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:638:y:2024:i:c:s037843712400150x
DOI: 10.1016/j.physa.2024.129642
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().