Macroscopic fluctuation theory of local time in lattice gases
Naftali R. Smith and
Baruch Meerson
Physica A: Statistical Mechanics and its Applications, 2024, vol. 639, issue C
Abstract:
The local time in an ensemble of particles measures the amount of time the particles spend in the vicinity of a given point in space. Here we study fluctuations of the empirical time average R=T−1∫0Tρx=0,tdt of the density ρx=0,t at the origin (so that R is the local time spent at the origin, rescaled by T) for an initially uniform one-dimensional diffusive lattice gas. We consider both the quenched and annealed initial conditions and employ the Macroscopic Fluctuation Theory (MFT). For a gas of non-interacting random walkers (RWs) the MFT yields exact large-deviation functions of R, which are closely related to the ones recently obtained by Burenev et al. (2023) using microscopic calculations for non-interacting Brownian particles. Our MFT calculations, however, additionally yield the most likely history of the gas density ρ(x,t) conditioned on a given value of R. Furthermore, we calculate the variance of the local time fluctuations for arbitrary particle- or energy-conserving diffusive lattice gases. Better known examples of such systems include the simple symmetric exclusion process, the Kipnis-Marchioro-Presutti model and the symmetric zero-range process. Our results for the non-interacting RWs can be readily extended to a step-like initial condition for the density.
Keywords: Large deviation theory; Lattice gases; Stochastic processes; Macroscopic fluctuation theory (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124001249
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001249
DOI: 10.1016/j.physa.2024.129616
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().