Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure
Loretta Mastroeni,
Alessandro Mazzoccoli and
Pierluigi Vellucci
Physica A: Statistical Mechanics and its Applications, 2024, vol. 641, issue C
Abstract:
Data has become one of the most crucial sources of human life. In particular, the ability to predict the future through data is a widely studied topic. In finance, as an instance, increased volatility, fluctuations, low-frequency events, and rare events negatively affect the predictability of data, thus increasing the level of risk. As a consequence, the inability to make accurate predictions on future events increases the uncertainty and variability of a given scenario, indicating a consequent increase in risk. In this paper, we analyze data predictability introducing a new measure based on entropy and the wavelet transform. In particular, we show that the data are less predictable than one might expect due to the mentioned fluctuations and low-frequency events. Furthermore, we apply our tool to real data, in particular to time series of commodities. As a result, thanks to this new measure, we can observe that the price time series under analysis exhibit a significant level of unpredictability due to increased volatility, fluctuations, and the influence of low-frequency events.
Keywords: Wavelet; Entropy; Predictability; Time series (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124002292
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002292
DOI: 10.1016/j.physa.2024.129720
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().