Maximum entropy network states for coalescence processes
Arsham Ghavasieh and
Manlio De Domenico
Physica A: Statistical Mechanics and its Applications, 2024, vol. 643, issue C
Abstract:
Complex network states are characterized by the interplay between system’s structure and dynamics. One way to represent such states is by means of network density matrices, whose von Neumann entropy characterizes the number of distinct microstates compatible with given topology and dynamical evolution. In this Letter, we propose a maximum entropy principle to characterize network states for systems with heterogeneous, generally correlated, connectivity patterns and non-trivial dynamics. We focus on three distinct coalescence processes, widely encountered in the analysis of empirical interconnected systems, and characterize their entropy and transitions between distinct dynamical regimes across distinct temporal scales. Our framework allows one to study the statistical physics of systems that aggregate, such as in transportation infrastructures serving the same geographic area, or correlate, such as inter-brain synchrony arising in organisms that socially interact, and active matter that swarm or synchronize.
Keywords: Network science; Complex networks; Network information theory; Network density matrix; Network dynamics; Network coalescence (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124002619
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124002619
DOI: 10.1016/j.physa.2024.129752
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().