A methodology of cooperative driving based on microscopic traffic prediction
Boris S. Kerner,
Sergey L. Klenov,
Vincent Wiering and
Michael Schreckenberg
Physica A: Statistical Mechanics and its Applications, 2024, vol. 643, issue C
Abstract:
We present a methodology of cooperative driving in vehicular traffic, in which for short-time traffic prediction rather than one of the statistical approaches of artificial intelligence (AI), we follow a qualitative different microscopic traffic prediction approach developed recently (Kerner and Klenov, 2022). In the microscopic traffic prediction approach used for the planning of the subject vehicle trajectory, no learning algorithms of AI are applied; instead, microscopic traffic modeling based on the physics of vehicle motion is used. The presented methodology of cooperative driving is devoted to application cases in which microscopic traffic prediction without cooperative driving cannot lead to a successful vehicle control and trajectory planning. For the understanding of the physical features of the methodology of cooperative driving, a traffic city scenario has been numerically studied, in which a subject vehicle, which requires cooperative driving, is an automated vehicle. Based on microscopic traffic prediction, in the methodology first a cooperating vehicle(s) is found; then, motion requirements for the cooperating vehicle(s) and characteristics of automated vehicle control are predicted and used for vehicle motion; to update predicted characteristics of vehicle motion, calculations of the predictions of motion requirements for the cooperating vehicle and automated vehicle control are repeated for each next time instant at which new measured data for current microscopic traffic situation are available. With the use of microscopic traffic simulations, the evaluation of the applicability of this methodology is illustrated for a simple case of unsignalized city intersection, when the automated vehicle wants to turn right from a secondary road onto the priority road.
Keywords: Automated driving; Mixed traffic flow; Cooperative driving; Microscopic traffic prediction; Automated vehicle control at unsignalized city intersection (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124002899
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124002899
DOI: 10.1016/j.physa.2024.129780
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().