Permutation invariant Gaussian matrix models for financial correlation matrices
George Barnes,
Sanjaye Ramgoolam and
Michael Stephanou
Physica A: Statistical Mechanics and its Applications, 2024, vol. 651, issue C
Abstract:
We construct an ensemble of correlation matrices from high-frequency foreign exchange market data, with one matrix for every day for 446 days. The matrices are symmetric and have vanishing diagonal elements after subtracting the identity matrix. For such ensembles, we construct the general permutation invariant Gaussian matrix model, which has 4 parameters characterised using the representation theory of symmetric groups. The permutation invariant polynomial functions of the symmetric, diagonally vanishing matrices have a basis labelled by undirected loop-less graphs. Using the expectation values of the general linear and quadratic permutation invariant functions of the matrices in the dataset, the 4 parameters of the matrix model are determined. The model then predicts the expectation values of the cubic and quartic polynomials. These predictions are compared to the data to give strong evidence for a good overall fit of the permutation invariant Gaussian matrix model. The linear, quadratic, cubic and quartic polynomial functions are then used to define low-dimensional feature vectors for the days associated to the matrices. These vectors, with choices informed by the refined structure of small non-Gaussianities, are found to be effective as a tool for anomaly detection in market states: statistically significant correlations are established between atypical days as defined using these feature vectors, and days with significant economic events as recognised in standard foreign exchange economic calendars. They are also shown to be useful as a tool for ranking pairs of days in terms of their similarity, yielding a strongly statistically significant correlation with a ranking based on a higher dimensional proxy for visual similarity.
Keywords: Permutation invariant matrix models; Symmetric group representation theory; Statistical mechanics; Gaussianity; Financial correlations; High-frequency foreign exchange data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124005247
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:651:y:2024:i:c:s0378437124005247
DOI: 10.1016/j.physa.2024.130015
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().