EconPapers    
Economics at your fingertips  
 

A spatiotemporal optimization method for connected and autonomous vehicle operations in long tunnel constructions

Yangsheng Jiang, Kui Xia, Haoran Jiang, Fei Chen and Zhihong Yao

Physica A: Statistical Mechanics and its Applications, 2024, vol. 651, issue C

Abstract: With the advancement of technology, connected and autonomous vehicles (CAVs) can be applied to complex tunnel networks in long tunnel construction to enhance vehicle operation safety and efficiency. This paper proposes an optimization method for CAVs' operation in long tunnel constructions. Firstly, a spatiotemporal coordinated optimization model with decentralized time and hierarchical networks is proposed to minimize the total working time for completing transportation services. The model integrates macro task allocation and micro node control and optimizes the vehicle-space-time relationships of CAVs to prevent conflicts and collisions. Secondly, a heuristic algorithm named Search-Adjustment Genetic Algorithm (SAGA) is developed to solve the problem considering the model's complexity and engineering characteristics. Thirdly, numerical experiments are designed to validate the feasibility and efficiency of the proposed model and algorithm. The results indicate that (1) the proposed model can effectively deconflict CAVs in the road network to ensure safety and obtain a low total working time to fulfill the transportation demand. (2) Compared to the commercial solver Gurobi, the proposed algorithm demonstrates significantly superior solution accuracy and efficiency within an acceptable time limit. (3) The solution ensures the safety and efficiency of CAVs and increases their utilization compared with engineering-oriented methods, resulting in a 50 % reduction in CAV acquisition costs, a 29 % and 85 % reduction in running time and delay respectively, and a reduction in fuel consumption. (4) As the number of transportation services and the complexity of the road network increases, the efficiency gains become more prominent and better adapted to the needs of the actual long tunnel construction project. To sum up, the proposed model and algorithm can ensure the safety and efficiency of providing transportation services in future long tunnel construction. Moreover, it can be adapted for controlling CAVs in road networks such as other construction scenarios and urban road networks.

Keywords: Connected and autonomous vehicles; Spatiotemporal coordinated optimization; Long tunnel constructions; Integer linear programming; Search-Adjustment Genetic Algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124005508
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:651:y:2024:i:c:s0378437124005508

DOI: 10.1016/j.physa.2024.130041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:651:y:2024:i:c:s0378437124005508