Optimizing power-efficiency dynamics in ambient energy harvesting: Exploring trade-offs, linearity, and synergy
Debalina Hazra and
Shrabani Mondal
Physica A: Statistical Mechanics and its Applications, 2024, vol. 652, issue C
Abstract:
As the demand for low-power electronics and IoT devices grows, ambient energy harvesting appears to be a promising alternative for powering such systems in the long run. However, optimizing power and efficiency concurrently in such systems is challenging, involving balancing a number of variables. This paper investigates the optimization of power and efficiency in ambient energy harvesting systems focusing on nonlinear oscillator electromechanical harvesters subjected to multiplicative time-correlated ambient noise. Through extensive numerical simulations, we reveal distinct relationships between power and efficiency, influenced by various parameters. We observe autonomous stochastic resonance phenomena, elucidating a linear power-efficiency trend for small noise correlation time under fixed noise variance but limiting simultaneous power and efficiency optimization beyond a threshold. Under fixed noise strength, there is a trade-off between power and efficiency. Additionally, damping strength, piezoelectric parameters, and capacitor charging time impact power and efficiency linearly. These insights enhance understanding of power efficiency dynamics in ambient energy harvesting, thereby offering practical recommendations for parameter selection to maximize both power output and efficiency in the next generation of electronics.
Keywords: MEMS; Ambient energy harvesting; Efficiency; Color noise; Autonomous stochastic resonance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124005594
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005594
DOI: 10.1016/j.physa.2024.130050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().