Thermodynamic properties and performance improvements of fractional Otto heat engine with repulsive bosons
Shihao Xia,
Ousi Pan,
Yuzhuo Pan,
Jincan Chen and
Shanhe Su
Physica A: Statistical Mechanics and its Applications, 2024, vol. 653, issue C
Abstract:
This study presents calculations of a multiparticle system within the framework of fractional quantum mechanics. We specifically explore the energy levels of a bosonic system with repulsive interactions confined in a hard-wall box. The impacts of fractional parameters on the system’s thermodynamic properties are meticulously analyzed. Furthermore, utilizing this model, we construct a quantum Otto cycle and discover that the system exhibits Bose–Fermi duality under varying fractional parameters. Intriguingly, the introduction of fractional parameters enables to optimize the performance of the quantum heat engine, edging it closer to the Carnot efficiency.
Keywords: Fractional multiparticle systems; Quantum thermodynamics; Quantum heat engines; Bose–Fermi duality; Fractional quantum mechanics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124006034
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124006034
DOI: 10.1016/j.physa.2024.130094
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().