EconPapers    
Economics at your fingertips  
 

Multi-objective optimization for connected and automated truck platoon control with improved CACC model

Kexin Wang, Xiang Wang, Wenjuan E, Mingdi Fan and Jiaxin Tong

Physica A: Statistical Mechanics and its Applications, 2024, vol. 654, issue C

Abstract: Connected and Automated Truck Platoon (CATP) refers to a group of trucks traveling closely together with minimal spacing to improve fuel economy and safety. However, challenges arise from instability due to internal platoon factors and external traffic disturbances. This research presents an improved Cooperative Adaptive Cruise Control (CACC) model tailored for CATP to address these challenges. The model is designed to enhance safety, fuel efficiency, and traffic efficacy. The improvements of the proposed model are in two aspects: the optimizing of the time headway strategy and the dynamic parameter adjustments of controller based on multi-objectives. The Dynamic Safety Requirement Time Headway (DSRTH) strategy facilitates the timely detection of the accelerations of the leading vehicles within the platoon, enabling quick driving responses. Additionally, Model Predictive Control (MPC) enables dynamic calibration of Proportional-Derivative (PD) control parameters and issuance of velocity commands. Meanwhile, the integration of a second-order time-delay response model has been implemented to adapt to dynamic changes in commands. A transfer function has been established, and stability has been proven. To evaluate the model performance, simulation analysis was performed using real vehicle trajectories as the CATP following vehicles. The results indicate that the DSRTH strategy outperforms both the Constant Time Headway (CTH) and Variable Time Headway (VTH) strategies, allowing rear vehicles to reach the speed trough earlier, with response speeds improved by 3.1 % and 1.5 %, respectively. Compared to the Intelligent Driver Model (IDM) and CACC models, the improved CACC model achieves a steady state of constant acceleration sooner, with recovery times reduced by 17.7 % and 3.2 %. Additionally, compared to the IDM model, the improved CACC model can save 3.23 % in fuel consumption. Furthermore, sensitivity analysis indicates that as the CATP proportion and platoon size increase, there is a positive impact on traffic flow. However, when the platoon size exceeds 5 vehicles, it shows a negative impact on the stability of other vehicles in the traffic flow besides those in the CATP.

Keywords: Connected and automated truck platoon; Model predictive control; Proportional - derivative control; Dynamic safety requirement time headway (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124006459
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006459

DOI: 10.1016/j.physa.2024.130136

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006459