Singularities of Taylor’s power law in the analysis of aggregation measures
Samuele De Bartolo
Physica A: Statistical Mechanics and its Applications, 2024, vol. 654, issue C
Abstract:
Taylor’s law is a well-known power law (TPL) for analysing the scaling behaviour of many fluctuating physical phenomena in nature. The scaling exponent b of this law forms the basis of the aggregation process to which a precise probability density function corresponds. In some phenomena, TPL behaviour with periodic components of the aggregates has been observed for small partitions, especially for physical processes characterised by values of b=1 where fluctuation-related aggregation processes are supported by Poissonian distributions. We intend to show that for values of b very close to unity it is possible to find a trend, in the double logarithmic scale, of the TPL that there are ‘periodic patterns’ (components) between variance and mean. This behaviour is found in other binomial-type distributions, of which the Poissonian is a particular case, with mappings characterised by a variance close to 1.
Keywords: Taylor’s power law; Poissonian processes; Aggregate measures (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124006605
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006605
DOI: 10.1016/j.physa.2024.130151
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().