Role of delay in brain dynamics
Yuval Meir,
Ofek Tevet,
Yarden Tzach,
Shiri Hodassman and
Ido Kanter
Physica A: Statistical Mechanics and its Applications, 2024, vol. 654, issue C
Abstract:
Significant variations of delays among connecting neurons cause an inevitable disadvantage of asynchronous brain dynamics compared to synchronous deep learning. However, this study demonstrates that this disadvantage can be converted into a computational advantage using a network with a single output and M multiple delays between successive layers, thereby generating a polynomial time-series outputs with M. The proposed role of delay in brain dynamics (RoDiB) model, is capable of learning increasing number of classified labels using a fixed architecture, and overcomes the inflexibility of the brain to update the learning architecture using additional neurons and connections. Moreover, the achievable accuracies of the RoDiB system are comparable with those of its counterpart tunable single delay architectures with M outputs. Further, the accuracies are significantly enhanced when the number of output labels exceeds its fully connected input size. The results are mainly obtained using simulations of VGG-6 on CIFAR datasets and also include multiple label inputs. However, currently only a small fraction of the abundant number of RoDiB outputs is utilized, thereby suggesting its potential for advanced computational power yet to be discovered.
Keywords: Deep learning; Machine learning; Shallow learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124006757
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:654:y:2024:i:c:s0378437124006757
DOI: 10.1016/j.physa.2024.130166
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().