EconPapers    
Economics at your fingertips  
 

Effect of second-order network structure on link prediction

Xing Huang, Tian Qiu and Guang Chen

Physica A: Statistical Mechanics and its Applications, 2024, vol. 655, issue C

Abstract: Small-degree nodes widely exist in real networks, causing the difficulty in link prediction for them due to the lack of information. The clustering information benefits the link prediction by introducing the network inner structure, however, the commonly discussed first-order clustering information is still insufficient for the link prediction of the small-degree nodes. In this article, we introduce the second-order network structure to complement information for the small-degree nodes. A general link prediction approach is proposed by incorporating the second-order clustering coefficient, and is employed to improve eight baseline algorithms. Experimental results show that all the baseline algorithms are remarkably improved. Compared with three advantageous similarity-based and two learning-based algorithms, an improved common neighbor method also shows an advantage in most cases. Further, an information gain between the first- and the second-order network structure is investigated, and the second-order network structure is found to also contain abundant information, which provides a possible understanding to the proposed approach. Our work may shed a new light on how network structure affects link prediction.

Keywords: Complex network; Link prediction; Second-order network structure; Clustering coefficient; Information gain (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124006782
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006782

DOI: 10.1016/j.physa.2024.130169

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006782