EconPapers    
Economics at your fingertips  
 

Shape parameter of Weibull size statistics is a potential indicator of filler geometry in SiO2 reinforced polymer composites

Huan Jin, Wenxun Sun and Xianan Qin

Physica A: Statistical Mechanics and its Applications, 2024, vol. 656, issue C

Abstract: In a previous study [Physica A, 625 (2023), 129026], a relationship between the filler size distribution and the filler geometry of SiO2 particle reinforced polymer composites has been reported. It has been experimentally demonstrated that the size of hollow and solid SiO2 particles disperse in polymer matrix follows Weibull statistics with shape parameter at 2 and 3, respectively. This mechanism has not yet been verified in the one-dimensional (1D) case. In this paper, we study the length distribution of glass fibers in polymer composites. Our results show that the previous theory still holds for the 1D case. Thus, shape parameter of Weibull size statistics could be a potential indicator of filler geometry in SiO2 reinforced polymer composites. This interesting mechanism can be explained by the scaling nature behind the Weibull statistics. Our study has thus shed new light on the evolution of filler geometry during the fabrication process of polymer composites, and should be useful for the related fields.

Keywords: Weibull statistics; Laplacian statistics; Shape parameter; Polymer composite; Scaling law; Maximal entropy principle (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124007313
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:656:y:2024:i:c:s0378437124007313

DOI: 10.1016/j.physa.2024.130222

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:656:y:2024:i:c:s0378437124007313