EconPapers    
Economics at your fingertips  
 

Eliminating bias in pedestrian density estimation: A Voronoi cell perspective

Pratik Mullick, Cécile Appert-Rolland, William H. Warren and Julien Pettré

Physica A: Statistical Mechanics and its Applications, 2025, vol. 657, issue C

Abstract: For pedestrians moving without spatial constraints, extensive research has been devoted to develop methods of density estimation. In this paper we present a new approach based on Voronoi cells, offering a means to estimate density for individuals in small, unbounded pedestrian groups. A thorough evaluation of existing methods, encompassing both Lagrangian and Eulerian approaches employed in similar contexts, reveals notable limitations. Specifically, these methods turn out to be ill-defined for realistic density estimation along a pedestrian’s trajectory, exhibiting systematic biases and fluctuations that depend on the choice of parameters. There is thus a need for a parameter-independent method to eliminate this bias. We propose a modification of the widely used Voronoi-cell based density estimate to accommodate pedestrian groups, irrespective of their size. The advantages of this modified Voronoi method are that it is an instantaneous method that requires only knowledge of the pedestrians’ positions at a give time, does not depend on the choice of parameter values, gives us a realistic estimate of density in an individual’s neighborhood, and has appropriate physical meaning for both small and large human crowds in a wide variety of situations. We conclude with general remarks about the meaning of density measurements for small groups of pedestrians.

Keywords: Pedestrian dynamics; Crowd management; Density estimation; Voronoi construction (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712400760X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:657:y:2025:i:c:s037843712400760x

DOI: 10.1016/j.physa.2024.130251

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s037843712400760x