EconPapers    
Economics at your fingertips  
 

Parameter identification of the Black-Scholes model driven by multiplicative fractional Brownian motion

Wentao Hou and Shaojuan Ma

Physica A: Statistical Mechanics and its Applications, 2025, vol. 660, issue C

Abstract: In this paper, we propose a parameter identification method based on deep learning network, which can jointly identify all parameters of the Black–Scholes (BS) model driven by multiplicative fractional Brownian motion (FBM) in a discrete sample trajectory. Firstly, the Convolutional Neural Network (CNN) is combined with the Bi-directional Gated Recurrent Unit (BiGRU) and the attention mechanism (AM) is integrated to construct the new identifier (CBANN). Then, the multiplicative FBM is constructed as the random effect of the BS model, and all the parameters of the model are identified by the new identifier. Finally, extensive numerical simulations are conducted for both known and unknown Hurst exponents, and two empirical studies are performed using real data. The results suggest that, compared to the PENN identifier and the maximum likelihood (ML) identifier, the proposed identifier can simultaneously identify all parameters in the model more quickly and accurately. Additionally, several advantages of the new identifier are discussed, including its strong generalization performance, flexibility in training set proportion settings, and the incorporation of an attention mechanism layer.

Keywords: Dynamical system; Fractional brownian motion; Deep learning network; Parameter identification (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000238
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437125000238

DOI: 10.1016/j.physa.2025.130371

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:660:y:2025:i:c:s0378437125000238