EconPapers    
Economics at your fingertips  
 

A multi-scale information fusion approach for brain network construction in epileptic EEG analysis

Zhiwen Ren and Dingding Han

Physica A: Statistical Mechanics and its Applications, 2025, vol. 661, issue C

Abstract: Epilepsy is characterized by complex, multi-scale disruptions in brain connectivity, yet most EEG-based network analyses focus on specific frequency bands or time scales, overlooking crucial cross-scale interactions. In this study, we propose a novel multi-scale information fusion (MSIF) framework that integrates connectivity across multiple frequency bands, temporal windows, and construction methods into a single, fused brain network. By employing Particle Swarm Optimization (PSO), our approach adaptively weights each component to maximize seizure–non-seizure discriminability while preserving stability in non-seizure phases. We validated the MSIF framework using two publicly available EEG datasets (CHB-MIT and Siena) and compared its performance against conventional methods. Our results demonstrate that the MSIF framework outperforms single-scale methods, achieving higher Comprehensive Sensitivity Scores (CSS) and more pronounced separation of seizure vs. non-seizure states. Compared to single-scale methods, the multi-scale fusion significantly enhances sensitivity to seizure-induced network reconfigurations, as evidenced by marked alterations in network metrics (e.g., global efficiency, clustering coefficient) during the seizure phase and a clear return toward baseline in post-seizure segments. These findings underscore the potential of multi-scale fusion to provide richer insights into epileptic network behavior and support more accurate seizure detection and monitoring. The proposed framework paves the way for network-based biomarkers in clinical settings, offering a scalable approach adaptable to diverse electrode configurations and patient populations.

Keywords: EEG analysis; Multi-scale information fusion; Brain network dynamics; Network construction; Particle Swarm Optimization; Deep learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000676
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000676

DOI: 10.1016/j.physa.2025.130415

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000676