Complex network-based framework for flow pattern identification in vertical upward oil–water two-phase flow
Xiaofeng Cui,
Yuling He,
Mengyu Li,
Weidong Cao and
Zhongke Gao
Physica A: Statistical Mechanics and its Applications, 2025, vol. 662, issue C
Abstract:
The investigation of oil–water two-phase flow in vertical pipelines holds significant research implications for a multitude of industrial applications, including oil production, chemical processing, and wastewater treatment. This research introduces a complex network-based framework for analyzing multi-node measurement signals from an eight-electrode cyclic excitation conductivity sensor, aimed at recognizing intricate flow patterns in vertical upward oil–water two-phase flow. Initially, experiments on vertical upward oil–water two-phase flow were conducted in a 20 mm diameter pipeline, where flow dynamics were recorded using the aforementioned sensor. During the experiments, flow patterns captured by a high-speed camera included dispersed oil-in-water slug flow (D OS/W), dispersed oil-in-water flow (D O/W), and very fine dispersed oil-in-water flow (VFD O/W). Subsequently, the multivariate pseudo-Wigner–Ville distribution time–frequency representation (PWVD TFR) was employed to characterize the flow behavior from both energy and frequency perspectives. Finally, the sensor’s measurement nodes were treated as nodes in a network, and the mutual information between each time series was calculated to construct a complex network; network metrics were then computed to quantitatively characterize the network topology. The findings indicate that our method can effectively integrate multi-channel measurement signals and reveal the evolution of complex flow behaviors.
Keywords: Mutual information; Complex networks; Flow pattern identification; Eight-electrode cyclic excitation conductivity sensor; Time series analysis; Oil–water two-phase flow (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000032
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000032
DOI: 10.1016/j.physa.2025.130351
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().